DENSER: deep evolutionary network structured representation
نویسندگان
چکیده
منابع مشابه
DENSER: Deep Evolutionary Network Structured Representation
Deep Evolutionary Network Structured Representation (DENSER) is a novel approach to automatically design Artificial Neural Networks (ANNs) using Evolutionary Computation (EC). The algorithm not only searches for the best network topology (e.g., number of layers, type of layers), but also tunes hyper-parameters, such as, learning parameters or data augmentation parameters. The automatic design i...
متن کاملTri-Party Deep Network Representation
Information network mining often requires examination of linkage relationships between nodes for analysis. Recently, network representation has emerged to represent each node in a vector format, embedding network structure, so off-the-shelf machine learning methods can be directly applied for analysis. To date, existing methods only focus on one aspect of node information and cannot leverage no...
متن کاملLearning Structured Output Representation using Deep Conditional Generative Models
Supervised deep learning has been successfully applied to many recognition problems. Although it can approximate a complex many-to-one function well when a large amount of training data is provided, it is still challenging to model complex structured output representations that effectively perform probabilistic inference and make diverse predictions. In this work, we develop a deep conditional ...
متن کاملStructured Deep Neural Network Pruning via Matrix Pivoting
Deep Neural Networks (DNNs) are the key to the state-of-the-art machine vision, sensor fusion and audio/video signal processing. Unfortunately, their computation complexity and tight resource constraints on the Edge make them hard to leverage on mobile, embedded and IoT devices. Due to great diversity of Edge devices, DNN designers have to take into account the hardware platform and application...
متن کاملLearning deep structured network for weakly supervised change detection
Conventional change detection methods require a large number of images to learn background models or depend on tedious pixel-level labeling by humans. In this paper, we present a weakly supervised approach that needs only image-level labels to simultaneously detect and localize changes in a pair of images. To this end, we employ a deep neural network with DAG topology to learn patterns of chang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetic Programming and Evolvable Machines
سال: 2018
ISSN: 1389-2576,1573-7632
DOI: 10.1007/s10710-018-9339-y